Refine Your Search

Topic

Search Results

Standard

SAE Electric Vehicle Inductively Coupled Charging

2014-06-05
CURRENT
J1773_201406
This SAE Recommended Practice establishes the minimum interface compatibility requirements for electric vehicle (EV) inductively coupled charging for North America. This part of the specification is applicable to manually connected inductive charging for Levels 1 and 2 power transfer. Requirements for Level 3 compatibility are contained in Appendix B. Recommended software interface messaging requirements are contained in Appendix A. This type of inductively coupled charging is generally intended for transferring power at frequencies significantly higher than power line frequencies. This part of the specification is not applicable to inductive coupling schemes that employ automatic connection methods or that are intended for transferring power at power line frequencies.
Standard

Power Quality Requirements for Plug-In Electric Vehicle Chargers

2011-12-08
HISTORICAL
J2894/1_201112
The intent of this document is to develop a recommended practice for PEV chargers, whether on-board or off-board the vehicle, that will enable equipment manufacturers, vehicle manufacturers, electric utilities and others to make reasonable design decisions regarding power quality. The three main purposes are as follows: 1 To identify those parameters of PEV battery charger that must be controlled in order to preserve the quality of the AC service. 2 To identify those characteristics of the AC service that may significantly impact the performance of the charger. 3 To identify values for power quality, susceptibility and power control parameters which are based on current U.S. and international standards. These values should be technically feasible and cost effective to implement into PEV battery chargers. SAE J2894/2 Power Quality Requirements for Plug-In Electric Vehicle Chargers – Test Methods will describe the test methods for the parameters / requirements in this document.
Standard

Power Quality Requirements for Plug-In Electric Vehicle Chargers

2020-06-08
WIP
J2894/1
The intent of this document is to develop a recommended practice for PEV chargers, whether on-board or off-board the vehicle, that will enable equipment manufacturers, vehicle manufacturers, electric utilities, and others to make reasonable design decisions regarding power quality. The three main purposes are as follows: 1. To identify those parameters of PEV battery charger that must be controlled in order to preserve the quality of the AC service. 2. To identify those characteristics of the AC service that may significantly impact the performance of the charger. 3. To identify those characteristics of the AC service that may significantly impact the performance of the charger. SAE J2894/2 will describe the test methods for the parameters/requirements in this document.
Standard

Power Quality Requirements for Plug-In Electric Vehicle Chargers

2019-01-23
CURRENT
J2894/1_201901
The intent of this document is to develop a recommended practice for PEV chargers, whether on-board or off-board the vehicle, that will enable equipment manufacturers, vehicle manufacturers, electric utilities, and others to make reasonable design decisions regarding power quality. The three main purposes are as follows: 1 To identify those parameters of PEV battery charger that must be controlled in order to preserve the quality of the AC service. 2 To identify those characteristics of the AC service that may significantly impact the performance of the charger. 3 To identify values for power quality, susceptibility, and power control parameters which are based on current U.S. and international standards. These values should be technically feasible and cost effective to implement into PEV battery chargers. SAE J2894/2 will describe the test methods for the parameters/requirements in this document.
Standard

Plug-In Electrical Vehicle Charge Rate Reporting and Test Procedures

2024-02-28
WIP
J2953/4
This document facilitates clear and consistent comparisons of realistic charging capabilities of passenger vehicles via commercially available EVSE. Common test procedures and metrics are established for both vehicles and EVSE operating without limitations in nominal conditions. This document does not attempt to address performance variations of EV-EVSE interactions outside of nominal conditions such as extreme temperatures, variable SOCs, and so on.
Standard

Performance Characterization of Electrified Powertrain Motor-Drive Subsystem

2018-02-12
HISTORICAL
J2907_201802
This document was developed to provide a method of obtaining repeatable measurements that accurately reflects the performance of a propulsion electric drive subsystem, whose output is used in an electrified vehicle regardless of complexity or number of energy sources. The purpose is to provide a familiar and easy-to-understand performance rating. Whenever there is an opportunity for interpretation of the document, a good faith effort shall be made to obtain the typical in-service performance and characteristics and avoid finding the best possible performance under the best possible conditions. Intentional biasing of operating parameters or assembly tolerances to optimize performance for this test shall not be considered valid results in the scope of this document.
Standard

Performance Characterization of Electrified Powertrain Motor-Drive Subsystem

2023-08-01
CURRENT
J2907_202308
This document was developed to provide a method of obtaining repeatable measurements that accurately reflects the performance of a propulsion electric drive subsystem, whose output is used in an electrified vehicle regardless of complexity or number of energy sources. The purpose is to provide a familiar and easy-to-understand performance rating. Whenever there is an opportunity for interpretation of the document, a good faith effort shall be made to obtain the typical in-service performance and characteristics and avoid finding the best possible performance under the best possible conditions. Intentional biasing of operating parameters or assembly tolerances to optimize performance for this test shall not be considered valid results in the scope of this document.
Standard

North American Charging System (NACS) for Electric Vehicles

2024-01-24
WIP
J3400
This Recommended Practice covers the general physical, electrical, functional, safety, and performance requirements for conductive power transfer to an electric vehicle using a connector, which can be hand-mated and is capable of transferring either DC or AC single-phase power using two current-carrying contacts.
Standard

Megawatt Charging System for Electric Vehicles

2021-12-15
WIP
J3271
This document describes the megawatt-level DC charging system requirements for couplers/inlets, cables, cooling, communication and interoperability. The intended application is for commercial vehicles with larger battery packs requiring higher charging rates for moderate dwell time. A simplified analog safety signaling approach is used for connection-detection to guarantee de-energized state for unmated couplers with superimposed high speed data for EVSE-EV charging control and other value added services.
Standard

Measurement of Hydrogen Gas Emission from Battery-Powered Passenger Cars and Light Trucks During Battery Charging

2008-11-25
CURRENT
J1718_200811
This SAE Recommended Practice describes a procedure for measuring gaseous hydrogen emissions from the aqueous battery system of a battery-powered passenger car or light truck. The purpose of this procedure is to determine what concentrations of hydrogen gas an electric vehicle together with its charger will generate while being charged in a residential garage. Gaseous emissions are measured during a sequence of vehicle tests and laboratory tests that simulate normal and abnormal conditions during operational use. The results of this test may be used to determine whether or not forced air ventilation is required when a particular electric vehicle and its associated battery and charging system are used in a residential garage.
Standard

Interconnection Requirements for Onboard, Utility-Interactive Inverter Systems

2015-05-19
HISTORICAL
J3072_201505
This SAE Standard J3072 establishes interconnection requirements for a utility-interactive inverter system which is integrated into a plug-in electric vehicle (PEV) and connects in parallel with an electric power system (EPS) by way of conductively-coupled, electric vehicle supply equipment (EVSE). This standard also defines the communication between the PEV and the EVSE required for the PEV onboard inverter to be configured and authorized by the EVSE for discharging at a site. The requirements herein are intended to be used in conjunction with IEEE 1547 Standard for Interconnecting Distributed Resources with Electric Power Systems and IEEE 1547.1 Standard for Conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power Systems.
Standard

Interconnection Requirements for Onboard, Grid Support Inverter Systems

2023-03-31
WIP
J3072
This SAE J3072 Standard establishes requirements for a grid support inverter system function which is integrated into a plug-in electric vehicle (PEV) which connects in parallel with an electric power system (EPS) by way of conductively coupled, electric vehicle supply equipment (EVSE). This standard also defines the communication between the PEV and the EVSE required for the PEV onboard inverter function to be configured and authorized by the EVSE for discharging at a site. The requirements herein are intended to be used in conjunction with IEEE 1547 and IEEE 1547.1. This standard shall also support interactive inverters which conform to the requirements of IEEE 1547-2003 and IEEE 1547.1-2005, recognizing that many utility jurisdictions may not authorize interconnection.
Standard

Interconnection Requirements for Onboard, Grid Support Inverter Systems

2021-03-10
CURRENT
J3072_202103
This SAE J3072 Standard establishes requirements for a grid support inverter system function which is integrated into a plug-in electric vehicle (PEV) which connects in parallel with an electric power system (EPS) by way of conductively coupled, electric vehicle supply equipment (EVSE). This standard also defines the communication between the PEV and the EVSE required for the PEV onboard inverter function to be configured and authorized by the EVSE for discharging at a site. The requirements herein are intended to be used in conjunction with IEEE 1547 and IEEE 1547.1. This standard shall also support interactive inverters which conform to the requirements of IEEE 1547-2003 and IEEE 1547.1-2005, recognizing that many utility jurisdictions may not authorize interconnection.
Standard

Instructions for Using Plug-In Electric Vehicle (PEV) Communications, Interoperability and Security Documents

2023-10-30
WIP
J2836
This SAE Information Report J2836 establishes the instructions for the documents required for the variety of potential functions for PEV communications, energy transfer options, interoperability and security. This includes the history, current status and future plans for migrating through these documents created in the Hybrid Communication and Interoperability Task Force, based on functional objective (e.g., (1) if I want to do V2G with an off-board inverter, what documents and items within them do I need, (2) What do we intend for V3 of SAE J2953, …).
Standard

Instructions for Using Plug-In Electric Vehicle (PEV) Communications, Interoperability and Security Documents

2018-07-18
CURRENT
J2836_201807
This SAE Information Report J2836 establishes the instructions for the documents required for the variety of potential functions for PEV communications, energy transfer options, interoperability and security. This includes the history, current status and future plans for migrating through these documents created in the Hybrid Communication and Interoperability Task Force, based on functional objective (e.g., (1) if I want to do V2G with an off-board inverter, what documents and items within them do I need, (2) What do we intend for V3 of SAE J2953, …).
Standard

Hybrid and Electric Vehicle Safety Systems Information Report

2020-11-04
CURRENT
J2990/2_202011
This information report provides an overview of a typical high voltage electric propulsion vehicle (xEV) and the associated on-board safety systems typically employed by OEM’s to protect these high voltage systems. The report aims to improve public confidence in xEV safety systems and dispel public misconceptions about the likelihood of being shocked by the high voltage system, even when the vehicle has been damaged. The report will document select high voltage systems used for xEV’s and describe safety systems employed to prevent exposure to the high voltage systems.
Standard

Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Terminology

2022-09-30
CURRENT
J1715_202209
This SAE Information Report contains definitions for HEV, PHEV, and EV terminology. It is intended that this document be a resource for those writing other HEV, PHEV, and EV documents, specifications, standards, or recommended practices.
Standard

Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Terminology

2021-05-28
HISTORICAL
J1715_202105
This SAE Information Report contains definitions for HEV, PHEV, and EV terminology. It is intended that this document be a resource for those writing other HEV, PHEV, and EV documents, specifications, standards, or recommended practices.
X